Rational Curves on Grassmannians: systems theory, reality, and transversality
نویسندگان
چکیده
We discuss a particular problem of enumerating rational curves on a Grassmannian from several perspectives, including systems theory, real enumerative geometry, and symbolic computation. We also present a new transversality result, showing this problem is enumerative in all characteristics. While it is well-known how this enumerative problem arose in mathematical physics and also its importance to the development of quantum cohomology, it is less known how it arose independently in mathematical systems theory. We describe this second story. Published in ”Advances in Algebraic Geometry Motivated by Physics”, ed. E. Previato, Contemp. Math., 276, AMS, 2001. pp. 9–42.
منابع مشابه
Frontiers of Reality in Schubert Calculus
The theorem of Mukhin, Tarasov, and Varchenko (formerly the Shapiro conjecture for Grassmannians) asserts that all (a priori complex) solutions to certain geometric problems in the Schubert calculus are actually real. Their proof is quite remarkable, using ideas from integrable systems, Fuchsian differential equations, and representation theory. There is now a second proof of this result, and i...
متن کاملComplete systems of invariants for rank 1 curves in Lagrange Grassmannians
Curves in Lagrange Grassmannians naturally appear when one studies intrinsically ”the Jacobi equations for extremals”, associated with control systems and geometric structures. In this way one reduces the problem of construction of the curvature-type invariants for these objects to the much more concrete problem of finding of invariants of curves in Lagrange Grassmannians w.r.t. the action of t...
متن کاملOn Special Rational Curves in Grassmannians
We characterize, among all morphisms P → G(d, 2d), those which are GL2d(C)-equivalent to the canonical morphism induced by the Morita equivalence C ⊗C −.
متن کاملReal Rational Curves in Grassmannians
Fulton asked how many solutions to a problem of enumerative geometry can be real, when that problem is one of counting geometric figures of some kind having specified position with respect to some general fixed figures. For the problem of plane conics tangent to five general conics, the (surprising) answer is that all 3264 may be real. Similarly, given any problem of enumerating p-planes incide...
متن کاملQuantum cohomology of Grassmannians
The (small) quantum cohomology ring of a Grassmann variety encodes the enumerative geometry of rational curves in this variety. By using degeneracy loci formulas on quot schemes, Bertram has proved quantum Pieri and Giambelli formulas which give a complete description of the quantum cohomology ring. In this talk I will present elementary new proofs of these results which rely only on the defini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001